Gene Center Munich

Breadcrumb Navigation



Specter: Fast and highly accurate clustering of single-cell multimodal omics


A fundamental task in single-cell RNA-seq (scRNA-seq) analysis is the identification of transcriptionally distinct groups of cells. Numerous methods have been proposed for this problem, with a recent focus on methods for the cluster analysis of ultra-large scRNA-seq data sets produced by droplet-based sequencing technologies. Most existing methods rely on a sampling step to bridge the gap between algorithm scalability and volume of the data. Ignoring large parts of the data, however, often yields inaccurate groupings of cells and risks overlooking rare cell types. 

Van Hoan Do from the Canzar lab has developed method Specter that adopts and extends recent algorithmic advances in (fast) spectral clustering. In contrast to methods that cluster a (random) subsample of the data, we adopt the idea of landmarks that are used to create a sparse representation of the full data from which a spectral embedding can then be computed in linear time. They exploit Specter's speed in a cluster ensemble scheme that achieves a substantial improvement in accuracy over existing methods and that is sensitive to rare cell types. Its linear time complexity allows Specter to scale to millions of cells and leads to fast computation times in practice. Furthermore, on CITE-seq data that simultaneously measures gene and protein marker expression they demonstrate that Specter is able to utilize multimodal omics measurements to resolve subtle transcriptomic differences between subpopulations of cells.

Original publication:

Linear-time cluster ensembles of large-scale single-cell RNA-seq and multimodal data.
Do VH, Rojas Ringeling F, Canzar S.
Genome Res. 2021 Feb 24:gr.267906.120. doi: 10.1101/gr.267906.120. Online ahead of print.